信息通信业(ICT)十大趋势发布******
2023年1月6日,中国信息通信研究院(以下简称“中国信通院”)主办的“2023中国信通院ICT+深度观察报告会”主论坛在京举办,中国信通院副院长王志勤以《ICT产业体系高质量发展助推现代化建设开新局》为题发布了信息通信业(ICT)十大趋势。
近几年ICT产业发展持续向好,ICT产业的增加值及占GDP比重稳步提升,与此同时,ICT产业数智化赋能向深、向广、向新发展,ICT技术持续与传统产业融合,助推千行百业数字化转型升级。ICT产业高质量发展,将持续赋能实体经济,引导现代化产业体系加快构建。在ICT技术牵引下,5G技术、信息网络、先进计算、AI技术全面创新发展,赋能效应持续加深,数字化转型仍是产业主旋律,工业互联网成为关键路径,同时有了数据要素的加持,数字经济迈向量质齐升,数字治理和数字安全体系基本构建。在2023年,通过ICT高质量发展作为牵引,将带动数字经济健康繁荣发展。
信息通信业(ICT)十大趋势
一、 ICT技术红利持续释放,谋篇布局未来发展空间
二、个人行业应用双轮驱动,5G规模化发展加速推进
三、信息网络协同融合贯通,自智技术加快应用落地
四、先进计算创新模式升级,算力供给能力大幅提升
五、大模型驱动AI技术突破,应用能力边界不断拓展
六、智能制造向纵深发展,工业互联网成为关键路径
七、数据基础制度完善落地,数据要素市场建设提速
八、数字经济迈向量质齐升,构筑经济复苏中坚力量
九、数字治理体系基本形成,发展预期合作基础企稳
十、数字安全加速迭代升级,保障覆盖全过程全链条
更多精彩,敬请阅读解读PPT。
ICT产业今年呈现较快发展态势,面向未来,要加快关键技术自主创新突破,加快推进技术向产业端转化,加强与实体经济的深度融合。2023-2025年,我国ICT产业将保持持续增长态势,面向未来前沿技术我们加快相关布局,未来产业的培育将为ICT技术产业化开辟新的赛道。
在5G网络建设和应用发展过程中,推动5G规模化发展将成为今后一段时间的主要方向,需要从个人和行业两方面双驱动实现5G在实体经济中更广范围、更深层次、更高水平的深度融合。需要以终端和数字内容的发展创新来实现个人应用从量到质的变化。5G行业应用规模化发展将呈现梯次、阶段推进态势,在此过程中需要加强5G技术对行业应用的支持能力。
当前处于算网协同向算网融合发展的阶段,预计到2030年将实现设施、技术、运营、服务的体系化融合贯通。从算网协同到算网融合落地应用,再到最终算网一体将面临技术、产业等多重挑战。网络智能化水平不断提升,预计2025-2030年,网络自智能力将达到L4。从技术趋势看,下一步网络智能技术将向多源融合智能发展,支撑网络向更高等级自智能力发展。
当前,算力作为新生产力已成为普遍共识。先进计算通过系统化创新加速算力规模提升,极大提升了算力供给能力,性能更强、规模更大、功耗更低,同时能够实现低时延、高可靠性和精度更多的细分能力。先进计算在深度赋能各行各业数字化转型过程中正发挥重要作用,带动数字经济的发展。
从技术角度看,大模型将持续提升人工智能技术水平,推动人工智能从可用技术向好用的基础设施演变。同时,多模态、强算力和知识增强等技术将让大模型的性能得到进一步提升。从应用角度看,大模型的发展将进一步拓展人工智能应用的能力边界,不断催生新模式新业态。大模型将提升人工智能感知、认知和生成能力,并且有望在基础科学领域取得更多突破。
数字化转型保持高速发展态势,工业互联网作为数字化转型的关键支撑和路径,新技术应用、新产业培育日益活跃。5G+工业互联网作为我国重要推进方向,已初步实现规模化应用,工业互联网产业规模也由小到大,预计2025年将超过2万亿。智能制造作为制造业转型升级的主攻方向,全面向纵深发展,智能工厂建设走深扩宽,中小企业加速普及,数字化供应链也成为新的重要探索方向。
数据要素是数字化发展的基础,2022年12月通过的二十条构建了数字基础制度的相关意见,它的落地为数据要素市场建设奠定了基础。我们会继续加强对数据基础制度细化领域细则的制定,在数据产权、流通交易、收益分配、安全治理等方面进一步细化制度设计。随着数据制度的不断完善,我国数据要素市场建设将进一步提速。
数字经济迈向量质齐升。从国际来看,中美欧数字经济持续发展,新兴国家加速崛起,全球数字经济多极化发展格局将进一步凸显。从国内来看,数字经济正步入量质齐升的新十年,到2025年我国数字经济规模将超过60万亿元,数字经济投入产出的效率将提升至3.5。
我国与数字化发展相适应的数字治理制度体系框架基本形成。从法律、规划和政策层面,我国数字治理的顶层制度设计基本建立,治理体系建设方向、重点领域的治理要求基本明确。在此条件下,我们会继续努力提高它的预期性、操作性和协同性,进一步细化制度规则,使国家数字治理政策更加规范有序安全稳定,促进数字经济高质量发展。
数字化持续深入,驱动网络安全向数字安全发展演进,数字安全保障能力同步建设创新发展。安全保障需求从过去的线上网络空间安全可靠,拓展和延伸至线下物理空间的稳定运行。面向数字基础设施,数字安全进一步作用于信息通信安全、数据要素安全,以及网络物理融合安全。数字安全风险蔓延于数字化各环节各流程,数字技术、数字平台、数据要素及网络物理融合等成为安全保障重点。
人工智能应用于更多领域 计算机研究深入光电结合******
英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。
牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。
在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。
在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。(科技日报记者 刘霞)